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SUMMARY 
The transient convective motion in a two-dimensional square cavity driven by a temperature gradient is 
analysed. The cavity is filled with a low-Prandtl-number fluid and the vertical walls are maintained at 
constant but different temperatures, while the horizontal boundaries are adiabatic. A control volume 
approach with a staggered grid is employed to formulate the finite difference equations. Numerically accurate 
solutions are obtained for Prandtl numbers of 0001,0~005 and 0.01 and for Grashof numbers up to 1 x 10'. It 
was found that the flow field exhibits periodic oscillation at the critical Grashof numbers, which are 
dependent on the Prandtl number. As the Prandtl number is decreased, the critical Grashof number and the 
frequency of oscillation decrease. Prior to the oscillatory flow, steady state solutions with an oscillatory 
transient period were predicted. In addition to the main circulation, four weak circulations were predicted at 
the corners of the cavity. 
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INTRODUCTION 

When a fluid is subjected to a horizontal temperature gradient, convective motion is generated 
even for temperature differentials that are infinitesimally small.' Convection due to buoyancy is 
an important and often dominant mode of heat and mass transport2 Steady state flow and heat 
transfer in differentially heated cavities have been extensively investigated owing to their wide 
applications in fields such as solar energy utilization, nuclear reactor safety, crystal growth, 
metallurgy, materials processing and geophysical problems. For example, the fluid dynamic 
aspects of crystal growth from melts have been the topic of a number of papers, and reviews of the 
issues can be found in the l i t e r a t ~ r e . ~ - ~  

Transient natural convection in cavities has been studied experimentally by Pamplin and Bolt6 
and Kamotani and Sahraoui' using mercury and by Yewell et d.,* Iveyg and Nicolette et d . ' O  

using water or a glycerol-water mixture for a range of Rayleigh numbers up to 1.49 x The 
results with mercury showed that the temperature oscillates at a low frequency with a small 
amplitude. The amplitude of the oscillation is location-dependent. Both the frequency and 
amplitude increase with increasing temperature difference. Oscillations were not observed for 
G r l  1 x lo6 in a cavity with an aspect ratio of one.'*l1 Inconsistent results were obtained with 
water and with a gylcerol-water mixture. Experiments by Yewell et a1.' did not reveal any 
oscillations in the flow regardless of the high Rayleigh number (1-4 x 10') and the location of the 
probe. In contrast, Ivey' observed oscillations in temperature at Ra = 3.9 x 10.' This oscillatory 
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flow approached the final steady state conditions for certain flow regimes. No correlation was 
found between two temperature records at locations very near to each other. The author argued 
that this oscillation is due to the inertia of the flow entering the interior of the cavity from the side 
wall boundary layer, which leads to a hydraulic jump. 

For direct numerical simulation of transient thermal convection in low-Pr fluids, we refer to a 
number of pioneering papers12-17 using a variety of methods. For example, oscillatory 
convection was predicted for a liquid metal (Pr = 0.005) confined to a square cavity (A = 1) at a 
Grashof number of 1 x lo7, but a critical Grashof number for oscillatory convection was not 
determined.14 Weak secondary flows were predicted in the corners of the ~ a v i t y . ' ~ , ~ ~  Exam- 
ination of the available results for low-Pr fluids reveals that the determination of the threshold of 
oscillatory convection with direct simulation is difficult because it is strongly mesh-dependent. 

Numerical predictions of steady state thermal convection in low-Prandtl-number fluids have 
been made by different authors for steady state conditions. A unicellular motion was predicted7*11 
to exist in the cavity for Gr< 1 x lo6. One interesting observation from the results of Stewart and 
Weinberg" is that the streamlines are almost square for high-Prandtl-number (Pr = 10) fluids, 
while they are almost circular for low-Prandtl-number (Pr = 0.013) flows. There may exist small 
secondary circulations in the corners of the cavity, which are not predicted because of the coarse 
mesh (21 x 21) used in the analysis. 

The problem of predicting the flow field in low-Prandtl-number fluids due to thermal buoyancy 
force is not well understood. The flow is highly non-linear, because the inertial force dominates the 
flow, and the viscous effects are mainly confined to the very thin boundary layers. Experimental 
diagnostic techniques for low-Prandtl-number fluids (i.e. liquid metals) may introduce significant 
errors due to non-wetting between the metal and the measuring probe. Flow visualization is not 
possible owing to the opaqueness of the metal, and the use of radioactive tracers is possible but 
difficult. On the other hand, numerical simulations may produce an erroneous flow field if the 
algorithm is not adequate. There is a lack of experimental and theoretical results for the thermally 
driven flow of low-Prandtl-number fluids, under transient conditions. 

This paper deals with a two-dimensional numerical simulation of transient natural convection 
in a differentially heated square cavity. The numerical study has been undertaken as a first step, 
because the flow of liquid metals and semiconductors cannot be visualized and velocity 
measurements in buoyancy-driven liquid metal flows at low velocities are exceedingly difficult. 
This work is motivated by the need to gain a fundamental understanding of the physics and the 
onset of instability in a differentially heated square cavity filled with a low-Prandtl-number fluid. 
The work is relevant to solidification of ingots and castings, crystal growth from melts, materials 
processing, nuclear reactor safety and other applications. The effects of the Prandtl number on the 
flow structure and heat transfer are studied. 

ANALYSIS 

Physical and mathematical model 

We study the behaviour of homogeneous low-Prandtl-number fluids subjected to a buoyancy 
force inside the two-dimensional rectangular cavity of height H and length L (A = L/H is the 
aspect ratio) shown in Figure 1. The isothermal vertical walls are kept at constant but different 
temperatures, while the upper and lower connecting walls are adiabatic. Initially the fluid is at the 
cold wall temperature, then suddenly at times t = O  the temperature of one of the vetical walls is 
increased to a constant value Th > T,. The convective flow is generated by the buoyancy force as 
soon as T, # Th. The intensity of the convective flow depends on the magnitude of the temperature 
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Figure 1. Schematic diagram and co-ordinate system of the cavity 

difference AT= Th - T, > 0. The fluid within the cavity is assumed to have constant properties, 
except where buoyancy is concerned, i.e. the Boussinesq approximation is assumed to be valid. 
Scales of AT, H, H 2 / a  and a/H are used for temperature, length, time and velocity respectively. 

The governing conservation equations can be written as 

ae -+ v-(Ve) =v2e, 
az (3) 

where V and V2 are the gradient and Laplacian operators respectively. In equations (1)-(3), v =(i U + j V )  is the dimensionless velocity vector, P is pressure, 8 is temperature, t is dimen- 
sionless time and Pr (= v/a) and Ra = GrPr = (gflATH 3/va) are the Prandtl and Rayleigh numbers 
respectively. The dimensionless co-ordinates 5 and q are defined as x/L and y / H  respectively (see 
Figure 1). 
The boundary conditions are taken as 

8=1 atc=O, 

8=0 at 5 = 1 ,  

ae 
avl 
-=0 at v = O ,  1, 

v=O at all the boundaries. (7) 
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Method of solution 

Various methods have been used to solve the above transport equations. Finite difference,", l9 

finite element,l4# l 5  finite analytic2' and spectra121 methods have been employed using either 
streamfunction-vorticity or primitive variables approaches. In this paper a primitive variables 
approach is used to solve the finite difference form of equations (1H7). The domain of interest is 
divided into non-uniform control volumes. The mesh is staggered in such a way that the velocities 
calculated at the points lie on the faces of the control volumes, while the temperature is calculated 
at the midpoint of the control volumes.22 The difference equations are obtained by integrating the 
equations over each control volume. Non-linear algebraic equations resulting from discretization 
are solved iteratively using a tridiagonal matrix algorithm. A backward-Euler (implicit) time- 
differencing scheme is used to march the solution foward in time. Each time step advances the 
solution after a convergence is achieved. Two criteria were checked to insure the convergence of 
the solution. They included the ficticious mass source in the continuity equation2' convergence to 
zero, 0(1 x and convergence of certain selected arbitrary velocities and temperatures to 
constant values. 

Central difference discretization of the diffusive-advective flux is used for spatial derivatives, 
with a truncation error O(A.t,Ax'). The results are based on the central difference discretization, 
which is second-order-accurate, and are compared with the results based on the power-law 
scheme, which is an approximation for the one-dimensional exact solution. The power-law scheme 
showed more dumping on the amplitude of the oscillation than the central difference owing to 
false diffusion. This is consistent with results of Bottaro and Zebib.23 Also, Pate1 and MarkatosZ4 
concluded that the power-law scheme can be inaccurate for course grids. Hence the central 
difference scheme is used. 

Non-uniform grids are generated by applying a sine function property, which produces fine 
meshes near the walls that gradually increase in size up to the centre of the cavity. The location of 
the mesh points is calculated from 

xi+,=xi+Csin E;::'], ~ 

where the constant C can be found by integration: 

xL = j:N C sin [-] n(i - 1) di 
L,- 1 

or 

(9) 

In this equation xL is the x-axis length and LN is the number of nodes in the x-direction. A similar 
procedure is used to locate the meshes along the y-axis. Figure 2 shows the 61 x 61 mesh generated 
using the above equations. Non-uniform meshes of 21 x 21,31 x 31,41 x 41,51 x 51,61 x 61 and 
81 x 81 are considered in order to establish grid independence of the results. 

The results of three non-uniform meshes of 41 x 41, 61 x 61 and 81 x 81 for Gr= 1 x lo7 and 
Pr = 0.005 were compared and revealed insignificant difference in the streamlines and isotherms 
(Figure 3) for 61 x 61 and 81 x 81. The time series of velocity fields and Nusselt numbers showed 
little difference, except that there is a small shift in the average value of the U-velocity at the centre 
of the cavity and in the average Nusselt number at the vertical walls of the cavity (Figure 4). The 
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Figure 2. A 61 x 61 non-uniform mesh distribution 

average Nusselt number at the vertical walls is calculated as 

The effect of the spatial resolution on the average Nusselt number at the vertical walls of the 
cavity, after steady state oscillation has been established, is shown in Figure 4. The trend of the 
time series for the Nusselt number is the same for meshes 41 x 41,61 x 61 and 81 x 81, except that 
the values for mesh 41 x 41 underpredict the Nusselt number. Note the very fine ordinate scale on 
the enlarged plot (Figure 4). The difference between the average Nusselt number predicted by the 
61 x 61 and 81 x 81 meshes is 0.48% and between the 41 x 41 and 81 x 81 meshes it is 1.69%. The 
difference in frequency of the oscillation is less than 1% for the 61 x 61 and 81 x 81 meshes. 
Therefore it is assumed that the 61 x 61 non-uniform mesh is sufficiently fine. In fact, for 
Gr = 1 x lo7 and Pr = 0.005 the frequency is above the threshold of oscillation. Hence all the calcu- 
lations were carried with 61 x 61 non-uniform meshes until the lower bound was reached; then the 
number of grids was increased to 81 x 81 and the time step was reduced to one-half of that used for 
the 61 x 61 mesh to insure grid-independent results. 

Time steps of 0~001,0~002 and 0.004 were tested for the 61 x 61 mesh and the predictions were 
found to be consistent. Hence most calculations were carried out using a time step of 0.002. This 
insures that there are more than 30 time steps for the resolution of one cycle of oscillation (i.e. no 
aliasing effect). For Pr = 0.01 the time step was reduced to 00005, because at the same Grashof 
number the oscillation frequency was higher than that for Pr =O-O05. However, for Pr=0001 the 
oscillation frequency was low, and the tests showed that even using a time step of 0.01 yields 
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Figure 3. Streamlines and isotherms for Pr = 0.005,Gr = 1 x lo’ at T = 6; = - 6.6029, =0.2109 

insignificant differences compared with time steps of 0.002 and 0.001. Therefore the time step used 
in most of the calculations was 0.002 or 0-001 to insure that more than 30 time increments were 
used to resolve the fine time scale of oscillation for one period. All the calculations were carried on 
a Gould mini-super computer. The CPU time for each time step per node was 003 s when using an 
implicit double-precision method to reduce the round-off error. 
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Figure 4. Comparison of the average Nusselt number at the vertical walls of the cavity for meshes of 41 x 41,61 x 61 and 
81x81 withPr=0905and Gr=lx107 

RESULTS AND DISCUSSION 

All the calculations began with a stagnant fluid, and the temperature of the left vertical wall was 
suddenly increased to a constant value for z 2 0. Fifty-five streamlines are used to plot the flow 
field. Such a high resolution is intended to identify small-scale structures in the flow. This is 
important to understand the physics of the flow. Also, the minimum and maximum values of the 
streamlines are given in the figure captions at the specified time for the purpose of comparison 
with other schemes. If the steady state solution was achieved, the Nusselt numbers are given on the 
figure, truncated to the number of significant figures that converged. 

Results for Pr = 0.001 

For Pr =0-001 and Gr = 1 x lo6 no oscillation was predicted. The basic flow is a one-cell 
circulation limited by the lateral confinement. The flow and temperature fields gradually 
approached steady state. An increase of the Grashof number to 2 x lo6 yielded oscillatory flows 
with a very low frequency. A very long time simulation was required to predict whether the 
oscillation decays or amplifies (which took several days of computer time in time-sharing systems). 
Figure 5 shows the variation of the U-velocity at the centre of the cavity with time. It should be 
noted that using a mesh of 81 x 81 yields no difference in total and global variables compared with 
the results obtained when a mesh of 61 x 61 was employed for Gr = 2 x lo6. The Nusselt number 
did not yield a converged value but increased very slowly (within the fourth decimal digit) with 
time at both vertical walls of the cavity (Figure 6). For Gr = 3 x lo6 the oscillatory transient period 
was followed by an oscillating flow (Figure (7a)). This is displayed for the U-velocity at the centre 
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Figure 5. Time series of U-velocity at the centre of the cavity for Pr=OM)l and G r = 2 x  lo6 
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Figure 6. Time series of the average Nusselt number at both vertical walls of the cavity for Pr=O.Ool and G r = 2  x lo6 
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Figure 7. Transient U-velocities for Pr=O001 and G r = 3  x lo6: (a) at the centre of the cavity; (b) at the mid right-hand 
corner of the cavity 

of the cavity. It should be mentioned that all the locations in the cavity revealed similar trends and 
differed only in amplitude. For example, Figure 7(b) shows the U-velocity time series at the mid- 
cavity near the right boundary (see Figure 1 for location) and reveals that the onset of oscillation is 
the same as in Figure 7(a). Similar findings were obtained for other Grashof and Prandtl numbers 
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Figure 8. Streamlines and isotherms for Pr=0.001, G r = 3  x lo6 at T =  15; $,in= 

I 

1.6399, $,,,=O.OlOl 

when the flow field oscillates at the same frequency and only the amplitude is location-dependent. 
The Nusselt number did not show convergence (with variation in the fourth decimal point) but 
varied slowly even when the calculations were carried to t = 15. Streamlines revealed one main 
circulation (Figure 8), and probably very weak circulations in the corners were present but cannot 
be resolved with 55 streamlines; however, the minimum and maximum values of the streamlines 
indicate very weak circulations. 
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Figure 9. Streamlines and isotherms for Pr =Q005, Gr = 3 x lo6 at 7 = 8; = - 52402, $,. =a0361 

Results for Pr=OOO5 

For Pr = 0 0 0 5  and Gr = 1 x lo6 the time series for velocity and temperature showed a gradual 
approach to a steady state solution without any oscillation. The results for Gr = 3 x lo6 (shown in 
Figure 9) reveal that the streamlines are almost circular in shape, with one main circulation. Very 
weak circulations are probably present at the corners, as revealed by the maximum and minimum 
values of the streamlines. Because the negative values of the streamline indicate clockwise 
circulation and positive values indicate counterclockwise circulation, a comparison of Figures 8 
and 9 reveals very clearly the effect of the Prandtl number on the isotherms. The time history of the 
flow field is shown in Figure 10. The duration of the transient stage needed to reach steady state is 
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Figure 10. Time series of U-velocity at the centre of the cavity for Pr=0.005 and G r = 3  x lo6 

z x 3 .  The average Nusselt numbers at both vertical walls of the cavity converge to 2.1013 
(Figure 11). The same results were obtained with an 81 x 81 mesh. 

For Gr = 5 x lo6 the flow field at all locations oscillates with a dimensionless frequency (l/z) of 
12.2 (Figure 12), and so does the average Nusselt number (Figure 13). The corner circulations are 
evident in Figure 14. A comparison of the streamlines depicted in Figures 3 and 14 clearly shows 
that the streangth of these oscillations increases with the Grashof number. We should emphasize 
that we performed the computations for long periods of time during which the solution behaviour 
remained unchanged. However, we do not claim that the solution will exhibit the same behaviour 
if the computation is extended. 

It should be mentioned that B e n o ~ i ' ~  predicted oscillatory flow for Pr=0-005 at Gr= 1 x lo', 
whereas our results reveal oscillating flow for Gr > 3 x lo6. Also, Benocci's results do not show 
skew symmetry in the streamlines. This discrepancy may be explained by the fact that Benocci13 
used a coarser mesh (31 x 31), resulting in an overestimation of the threshold value. However, it is 
difficult to compare our results with those of Benocci, because he did not indicate explicity that 
Gr= 1 x lo7 is the critical value, and the frequency of the oscillation was not given. 

Results for Pr = 001 

Using 81 x 81 meshes for Pr =Om01 and Gr = 1 x lo7 with a time step of 0-0005, the streamlines 
reveal one main circulation with two rotating cells inside the main circulation, in addition to the 
corners cells (Figure 15). Spectral analysis showed two frequencies with their interaction after 
eliminating the transient period. The power content of the frequencies is location-dependent as 
seen in Figures 1qa) and lqb),  which show the time series with power spectra of the U-velocity at 
the centre and mid-right of the cavity respectively. The fundamental frequency is 21-5 and the 
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Figure 11. Time series of the average Nusselt number at both vertical walls of the cavity for Pr=@005 and Gr= 3 x lo6 

ur 

-0.5 . 

-1 - 

I\ 
I 

r 

V 

J 

- 2. 

I 

I 
3.8 4 

7 

Figure 12. Time series of U-velocity at mid right-hand comer of the cavity for Pr = O m  and Gr = 5 x lo6 
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Figure 13. Time series of the average Nusselt number at both vertical walls of the cavity for Pr = 0.005 and Gr = 5 x lo6 

Table 1. Summary of the numerical results 

Pr Gr z J/min J/max N u t  Dimensionless 
frequency 

0.001 2~ lo6* 12 -1.0096 0.0065 1.2142 
3 ~ 1 0 ~  15 -1.6399 0.0101 1.2178 

0.005 3 x lo6* 8 -5.2402 0.0361 2.1013 
5 ~ 1 0 ~  4 -5.8162 0.1647 2.3210 12.2 
1 x 10’ 6 -6.6029 0.2109 2.6863 15.9 

1 x lo’ 2 -7.8938 0.0970 3-2344 21.5 
0.01 5x106* 3 -6.9119 0.0596 2.8143 

* Oscillation was predicted for Gr greater than the indicated value. 
t Nusselt number averaged over time for oscillatory flow. 

secondary frequency is 13.8. In a numerical simulation, Gresho and Upson,14 using 70x70 
uniform element meshes, predicted similar phenomena. Decreasing the Grashof number to 8 x lo6 
also revealed oscillation as seen in Figure 17, which is a time series of the centre U-velocity. 
However, at Gr = 5 x lo6 a decaying oscillatory transient was predicted and the flow approached 
steady state. Figure 18 displays the time series of the U-velocity at the centre of the cavity. All 
locations inspected and the Nusselt number showed a similar trend. Streamline plots reveal a cell 
at the upper right-hand corner and by skew symmetry at the lower left-hand comer cavity, in 
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Figure 14. Streamlines and isotherms for Pr=0.005 and Gr=5 x lo6 at ~=4; -5.0162, $,,=0.1647 

addition to the main circulation (Figure 19). Hence it is considered that Gr=5  x lo6 is the 
threshold value. It should be mentioned that all the calculations for Pr = 001 were carried out with 
an 81 x 81 mesh and a time step of 0.0005. The value of Gr = 5 x lo6 is much larger than the value 
of 5.91 x lo4 for A =4 and Pr=0*015 which is reported by Winters.15 However, as indicated by 
Winters, the critical value increases to 3.10 x lo5 if the aspect ratio is decreased to 2-4. Hence a 
decrease in the aspect ratio is expected to increase the critical Grashof number for the onset of 
oscillation and may change the mode of instability. 
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Figure 15. Streamlines and isotherms for Pr =0.01 and Gr = 1 x lo7 at ‘L = 2; (Lmin = - 7.8938, (L,,=0.0970 

Comparison of results for dixerent Prandtl numbers 

Table I summerizes the results of the predictions. A comparison of the results for Pr=O.Ol, 
0.005 and 0.001 shows that as the Prandtl number decreases, the period of oscillatory transient 
regime increases dramatically (compare Figures 5, lO and 16). The frequency of oscillation and the 
critical Grashof numbers decrease as the Prandtl number decreases. The critical values of Grashof 
number given in this paper may serve as a starting point to obtain more precise results. One may 
also use the continuation method described by Winters. 
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Figure 16. Time series and power spectra of U-velocity (a) at the centre of the cavity and (b) at mid-right of the cavity for 
Pr=O.Ol  and Gr=l  x lo7 

For A = 4 and Pr = 0.01 5,  winter^,'^ using a technique which locates Hopf bifurcation 
conditions from a finite element solution of the extended system of equations, predicted a 
threshold value Gr=5.91 x lo4 for oscillatory convection, whereas Crochet et ~ 1 . ~ ' ~  using direct 
numerical simulation, predicted a value Gr= 3.2 x However, it is not known if the Grashof 
number of 3.2 x lo5 in the work of Crochet et al. is the ciritical value, because they have not 
performed the computations for many values of Gr. There is a similar discrepancy between the 
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Figure 17. Time series of U-velocity at the centre of the cavity for Pr =0.01 and Gr = 8 x lo6 
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Figure 18. Time series of U-velocity at the centre of the cavity for Pr=OOl and G r = 5  x lo6 

results of Bottaro and ZebibZ3 and Crochet et It is clear from the results reported that 
accurate determination of the threshold of oscillatory convection by direct simulation is very 
delicate, because it is very strongly mesh-dependent. Coarse meshes may result in the stabilization 
of the solution and in the delay of the onset of oscillatory convection at a higher value of Grashof 
number and with a damped amplitude of oscillation. Hence a wide spread is found among the 
critical Grashof numbers determined from direct numerical simulations and disagreement with 
the results based on stability analysis. 
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Figure 19. Streamlines and isotherms for Pr =@01 and Gr = 5 x lo6 

CONCLUSIONS 

This paper has reported numerical results for transient natural convection in a differentially 
heated square cavity for Pr=0-001,0905 and 0.01. The control volume approach was used to 
formulate the finite difference form of the conservation equations, with a truncation error 
O(A.5, Ax’). The calculations were carried out in double precision. For a square cavity (A = I) a 
finite set of Grashof numbers has been investigated. A finite time of integration has been 
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considered for unsteady calculations. These facts must be kept in mind when the following 
conclusions are drawn. 

1. For Gr= 1 x lo6 with Pr=0.001 and 0.005 the results showed that the flow field asymp- 
totically approaches steady state. 

2. Damped oscillatory transient periods were predicted for Pr=0.001, 0.005 and 0.01 at 
Grashof numbers of 2 x lo6, 3 x lo6 and 5 x lo6 respectively. 

3. Periodic flow was predicted for Pr=0*001, 0.005 and 0.01 at Grashof numbers of 3 x lo6, 
5 x lo6 and 8 x lo6 respectively. 

4. The frequency of oscillations and the ciritical Grashof number decrease as the Prandtl 
number decreases. 

5. Four weak circulation cells were predicted at the corners of the cavity. The strength of the 
cells in the upper right-hand and lower left-hand corners is greater than the strength of the 
upper left-hand and lower right-hand circulations. The results showed that the upper right- 
hand and,lower left-hand corner vortices evolved first, followed by the vortices in the other 
two corneis. This finding is consistent with the results of Gresho and Upson.14 This may 
suggest that the origin of the stability first appears at the upper right-hand corner and is due 
to the skew symmetry at the lower left-hand comer. 
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